Structural organization of a viral IRES depends on the integrity of the GNRA motif.

نویسندگان

  • Olga Fernández-Miragall
  • Encarnación Martínez-Salas
چکیده

Little is known about the tertiary structure of internal ribosome entry site (IRES) elements. The central domain of foot-and-mouth disease (FMDV) IRES, named 3 or I, contains a conserved GNRA motif, essential for IRES activity. We have combined functional analysis with RNA probing to define its structural organization. We have found that a UNCG motif does not functionally substitute the GNRA motif; moreover, binding of synthetic GNRA stem-loops to domain 3 was significantly reduced in RNAs bearing UCCG or GUAG substitutions. The apical region of domain 3 consists of a four-way junction where residues of the GNRA tetraloop are responsible for the organization of the adjacent stem-loops, as deduced from ribonucleases and dimethyl sulfate accessibility. A single A-to-G substitution in the fourth position of this motif led to a strong RNA reorganization, affecting several nucleotides away in the secondary structure of domain 3. The study of mutants bearing UNCG or GUAG tetraloops revealed lack of protection to chemical attack in native RNA at specific nucleotides relative to the parental GUAA, suggesting that the GNRA motif dictates the organization and stability of domain 3. This effect is likely mediated by the interaction with distant residues. Therefore, the GNRA motif plays a crucial role in the organization of IRES structure with important consequences on activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation.

Internal ribosome entry site (IRES) elements consist of highly structured RNA regions that determine internal initiation of translation. We have previously shown that the foot-and-mouth disease virus (FMDV) IRES contains a GNRA tetraloop spanning residues G178UAA181. Here we show that tertiary RNA interactions dependent on the GNRA motif determine the structural organization of the central doma...

متن کامل

Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation.

A comparison of picornavirus internal ribosome entry site (IRES) secondary structures revealed the existence of conserved motifs located on loops. We have carried out a mutational analysis to test their requirement for IRES-driven translation. The GUAA sequence, located in the aphthovirus 3A loop, did not tolerate substitutions that disrupt the GNRA motif. Interestingly, this motif was found at...

متن کامل

Insights into Structural and Mechanistic Features of Viral IRES Elements

Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requireme...

متن کامل

A conserved motif in group IC3 introns is a new class of GNRA receptor.

Terminal tetraloops consisting of GNRA sequences are often found in biologically active large RNAs. The loops appear to contribute towards the organization of higher order RNA structures by forming specific tertiary interactions with their receptors. Group IC3 introns which possess a GAAA loop in the L2 region often have a phylogenetically conserved motif in their P8 domains. In this report, we...

متن کامل

An in vitro-selected RNA receptor for the GAAC loop: modular receptor for non–GNRA-type tetraloop

Although artificial RNA motifs that can functionally replace the GNRA/receptor interaction, a class of RNA-RNA interacting motifs, were isolated from RNA libraries and used to generate designer RNA structures, receptors for non-GNRA tetraloops have not been found in nature or selected from RNA libraries. In this study, we report successful isolation of a receptor motif interacting with GAAC, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 9 11  شماره 

صفحات  -

تاریخ انتشار 2003